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SUMMARY 
In this paper a numerical analysis was made to investigate the aerodynamic forces surrounding two bodies in 
relative motion in a fluid at rest in three dimensions. The unsteady boundary element method was employed in 
the numerical calculations. This method is very convenient for obtaining an approximate expression of the 
velocity potential, especially for practical use. The passing-by of two spheres in an incompressible perfect fluid 
which extends to infinity is treated by the present method. The resultant pressure coefficients on two spheres 
passing each other in opposite directions are calculated and discussed numerically. Numerical examples are 
presented to show the validity of the present method. The method is also applied to the calculation of the passing- 
by of two trains in an open area in order to investigate its applicability. 
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1. INTRODUCTION 

The steady flow of a perfect fluid past an obstacle has been investigated by many authors, but there 
have been few works on the unsteady flow due to the motion of several bodies. The investigation of 
such a flow became necessary in connection with the high speed of new vehicles. 

At high speed, aerodynamic problems occur particularly when other vehicles pass by (Figure 1). 
For example, one vehicle experiences a sudden inverse pressure due to the passage of another vehicle. 
The flow field when vehicles pass by should be investigated in order to develop effective vehicle 
configurations for the future. 

The first study of this flow field was conducted by Kawaguchi in 1963.' The flow field around one 
train passing another was analytically studied and the effect of the distance between the two trains on 
the pressure was investigated. Some features of the flow make the study difficult. The boundaries of 
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Figure 1. Passing-by of trains 

the flow field change with time. Experimental studies of this configuration would require great skill 
because of the relative motion of the boundaries. It is quite difficult to obtain flow data around a 
moving body. Analytical studies are also difficult owing to the moving boundary configuration and its 
unsteadiness. 

In this paper we shall investigate the unsteady flow of a perfect fluid caused by the motion of two 
spheres in three dimensions which pass by each other, in order to estimate the pressure variation 
when two high-speed vehicles pass each other. To this end, computational fluid dynamics (CFD) is 
used for the investigation of the flow field. CFD can be a good tool for the investigation of flow fields 
to which experimental studies are hard to apply. However, the features mentioned above create 
difficulties also in CFD. The unsteady boundary element method is used to remove the difficulties in 
this research. There is no need to regenerate the panel at each time step unless the moving bodies 
change their shape. This is a great advantage of the unsteady boundary element method and it 
shortens the turnaround time in parametric studies. Further description of the numerical algorithm is 
presented in the following section. A series of phenomena are simulated and compared with 
analytical data. 

2. FLOW AROUND TWO MOVING SPHERES 

Kawaguchi has analytically treated the problem of two spheres passing by each other. In order to 
compare with our numerical result later, the outline of the analysis is described simply in the 
following (Figure 2). 

Although the flow of a perfect fluid around a sphere of radius u which moves parallel to the x-axis 
at velocity U can be exactly expressed by placing the doublet of strength Ua3/2, whose axis is 
parallel to the x-axis, at the centre of the sphere, the exact solution cannot be obtained by merely 
placing two doublets at two centres for the flow around two moving spheres (first approximation). To 
get a higher approximation for the flow around two moving spheres, it is necessary to add a flow due 
to the images of doublets with respect to spheres (second approximation), then to add a flow due to 
the images of images and so on. 

3. THEORY 

We shall consider the case where two spheres C1 and C2 of radius u (their centres being A, and A2 
respectively) pass by each other at velocities U and V parallel to the x-axis respectively. The instant 
when the two spheres come closest to each other is chosen as the origin of time (t = 0) and the middle 
point of AlA2 at t = O  is taken as the origin of the co-ordinates, 0. Let 2k be the shortest distance 
between the centres of the spheres at t = 0 (Figure 3). 
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Figure 2. Three-dimensional model of two spheres passing by 

Figure 3. Modelling of &o spheres in relative motion 

The problem of passing-by spheres is solved as an initial value problem. At each time interval a 
boundary value problem is solved for the velocity potential outside the bodies. 

If we consider three-dimensional bodies passing by at velocity u,, assuming the flow field around 
the bodies to be incompressible, inviscid and irrotational, a velocity potential Q, exists which must 
obey Laplace's equation. The boundary condition is given on the body by 

- u, . n. 84 
an 
-- 

In order to determine Q, at the body surface, Green's second identity is used. A Fredholm integral 
equation of the second kind is obtained for the velocity potential on the body surface: 

Here S is the surface of the body and r(P, Q) is the distance between P and Q, where P and Q are two 
arbitrary points on S. 



448 K. KIKUCHI, T. MAEDA AND M. YANAGIZAWA 

Following Morino’s method,* the integral equation is approximated in a system of linear algebraic 
equations using the finite element technique combined with the collocation method: 

Here 6hk is the Kronecker symbol, while C ,  and Bhk are aerodynamic influence coefficients defined 
by 

These integrals are analytically evaluated in detail without using the numerical integral method. 
Equation (3) can be solved numerically to yield the value of unknown 4 k .  

The x-, y-  and z-components of velocity at any point are easily given by differentiating (3): 

with 

The surface elements of the body are approximated by portions of a hyperboloidal paraboloid and the 
coefficients v,chk and V,Bh, can be evaluated analytically3 as the coefficients CM and BJ,~. 

The pressure on the surface can be obtained from an extended Bernoulli formula 

Through the first term on the left-hand side we include unsteadiness. Evaluation of the first term on 
the left-hand side is not easy. There are many methods proposed by various re~earchers.~.’ In this 
study we evaluate the term as 

Using this equation, we can get accurate results and shorten the calculation time. 

4. RESULTS 

The numerical model is shown in Figure 4. The discretization used here is (Nc = 30) x (Ns = 16) so 
that the total number of panels of one sphere is 480. The non-dimensional time interval is Ur/a = 0.1, 
where U is the larger velocity of the two spheres. One sphere should be placed far away from the 
other sphere at the beginning. However, it would require an enormous computational time for the 
sphere to travel over a long distance towards the other sphere and much of the computer time would 
be spent on the region that is outside our interest. Therefore we put the non-dimensional calculation 
time at - 4 to 4 so that the total number of time steps is 80. 

Numerical calculations have been carried out for the following cases: 

(1) U = l ,  V =  - 1, & = 1 . 2 5 ~  
(2) U= 1, Y=O, A =  1.251 
(3) U=O,  V =  - 1, k = 1 * 2 5 ~ .  
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Figure 4. Numerical model of two spheres 

These cases are shown in order to see the effect of changing the velocities of the two spheres. Case 
(1) is when both spheres are moving and cases (2) and (3) are when one of the spheres is at rest and 
the other is moving. Cases (2) and (3) were studied to clarify the phenomena when a train stops at a 
station and another train passes. 

The velocity components at various points on the sphere C1 in these cases are given in Figure 5 .  
From these velocities we can calculate the pressure distribution. The pressure variations on the 

The pressure variations shown in Figure 6 are also compared with the numerical results and 

We can see the behaviour of the time sequences of the pressure variation on the sphere in the 

(a) As expected, the pressure on the meeting side (point 3) is larger than that on the outer side 

(b) When one of the two spheres is at rest, the pressure change on the resting sphere is larger than 

(c) The pressure around the stagnation point shows a weak maximum and then falls to a strong 

sphere C, in the above cases are given in Figure 6. 

analytical solutions. We can see good agreement with the analytical values. 

figures as follows. 

(point 4). 

that on the moving one and the pressure variation is similar to that when both are moving. 

minimum just before the other sphere comes by. 

It is not easy to calculate the side force acting on the sphere by Kawaguchi's method, but we can 
obtain it easily using our method. The side force acting on the sphere is shown in Figure 7. As 
expected, it is noted that when both spheres are moving, i.e. case (l), the peak-to-peak value of the 
side force is largest. When one of the two spheres is at rest, the change in the side force on the resting 
sphere is larger than that on the moving one. 

5.  APPLICATION 

We applied the present method to the calculation of the passing-by of two trains in an open area in 
order to investigate its applicability. The field test result6 is given in Figure 8. This figure shows the 
pressure variation on the meeting side of the middle car. The two trains pass by on the open ground at 
velocities of 260 and 210 lan h-' respectively. 
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Figure 7. Time sequences of side force acting on sphere 
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Figure 8. Field test result 

We see in the figure that the pressure rises first, followed immediately by a sudden drop at the 
moment of the passage of the head of the opposite train. In addition to these pressure variations, there 
comes a negative pressure peak at the moment of the passage of the tail of the opposite train, but this 
is smaller than the former owing to the viscosity. 

The numerical model is shown in Figure 9. The discretization used here is (Nc = 85) x (Ns = 12) 
so that the total number of panels of one train is 1020. 

The pressure variation of the middle car is shown in Figure 10. The thicker line indicates the 
pressure variation on the meeting side. The thinner line indicates the pressure variation on the outer 
side. We can see the same phenomena of pressure variation as in the field test result. Because of 
potential theory, the peak-to-peak value at the moment of the passage of the tail is same as that at the 
moment of the passage of the head. Comparisons between numerical results and field test results 
show qualitatively good agreement. 

We can also see that the pressure variation of the passing-by train can be predicted reasonably well 
by the present method. 



PHENOMENA DUE TO PASSING-BY OF TWO BODIES 453 

Figure 9. Numerical model of two trains 
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Figure 10. Time sequences of pressure 

6. CONCLUSIONS 

Three-dimensional inviscid flows induced by spheres passing by each other have been 
computationally simulated using the unsteady boundary element method. Three flow configurations 
were investigated. 

From the results shown above, the following conclusions were obtained. 

(1) The unsteady boundary element method is effective for calculating the flow around two 

(2) The calculated results agree with analytical data from the image method. 
moving spheres. 

We also applied the present method to the calculation of two trains passing by in an open area. The 
results indicate that the numerical algorithm is sufficiently adaptable to the modelling of passing-by 
bodies. 
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There is no need to regenerate the panel at each time step by the unsteady boundary element 
method. This is a great advantage of the unsteady boundary element method and it shortens the 
turnaround time in practical work. 
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